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KI-Sortierung für Seltene-Erden-Pumpen: Eine Fallstudie mit WILO 
David Rohrschneider, Kevin Kurpierz, Edgar Oberdoerfer, Nermeen Abou Baker 

Seltene Erden (SE) sind für moderne Technologien unverzichtbar, 
doch ihre Wiederverwertung gestaltet sich nach wie vor schwie-
rig. Während Herstellung und Vertrieb von Produkten mit SE 
meist gut strukturiert sind, fehlt es häufig an einheitlichen Ver-
fahren zur Sammlung und Rückgewinnung dieser Elemente aus 
alten Produkten. 

WILO, ein Unternehmen, das für die Herstellung innovativer 
Pumpensysteme bekannt ist, hat bereits Rücknahme- und Re-
cyclingverfahren etabliert, um SE aus gebrauchten Pumpen zu-
rückzugewinnen. Da nicht jede zurückgegebene Pumpe SE ent-
hält und einzelne Exemplare hinsichtlich Bauweise und Zustand 
stark voneinander abweichen, ist dieser Prozess aktuell zeit- und 
kostenaufwändig. Der Einsatz von Künstlicher Intelligenz (KI) und 
maschinellem Sehen bietet dabei einen vielversprechenden An-
satz zur automatisierten Sortierung, da sie Muster in komplexen 
Daten erkennen und sich an unbekannte Situationen anpassen 
können. 

Die vorliegende Fallstudie, die in Zusammenarbeit mit der Hoch-
schule Ruhr West durchgeführt wurde, evaluiert die Umsetzbar-
keit eines KI-basierten visuellen Erkennungssystems zur automa-
tisierten Vorsortierung von SE-haltigen Pumpen am WILO-Re-
cyclingstandort in Dortmund. 

Pumpen in kritischen Rohstoffzyklen 
Pumpen zählen zu den am weitesten verbreiteten Maschinen 
in zahlreichen Branchen, darunter Fertigung, Energieversor-
gung, Wasserwirtschaft, chemische Industrie und Lebensmittel-
produktion. Durch technologische Fortschritte werden immer 
mehr Pumpen mit hocheffizienten Permanentmagnetmotoren 
ausgestattet, die oftmals SE (z.B. Neodym) enthalten. Auch Sen-
soren, Steuerungseinheiten und weitere elektronische Kompo-
nenten in diesen Systemen sind häufig auf SE angewiesen. 

Obwohl SE in vielen Regionen der Welt vorkommen, konzent-
rieren sich Abbau und Verarbeitung auf wenige Gebiete. Diese 
Konzentration führt zu geopolitischen Abhängigkeiten, 
schwankenden Preisen und erhöhten Versorgungsrisiken. 

Recycling und andere Strategien einer Kreislaufwirtschaft kön-
nen dazu beitragen, diese Risiken zu verringern, jedoch sind 
geschlossene Stoffkreisläufe in der Pumpenbranche bislang 
selten. Herkömmliche Zerkleinerungsverfahren führen oft dazu, 
dass SE-haltige Komponenten in ungeeignete Stoffströme ge-
langen und nicht mehr zurückgewonnen werden können. 

Auf dem Weg zu effizientem Pumpen-Re-
cycling bei WILO 
Zur Unterstützung der Materialrückgewinnung hat WILO ein 
Rücknahmesystem für Pumpen eingerichtet. Handwerksbe-
triebe können alte Pumpen, unabhängig von Marke, Alter oder 
Zustand, direkt beim Großhändler abgeben. Darüber hinaus 
können beim Ausliefern neuer Pumpen die ausgedienten Pum-
pen eingesammelt und zum unternehmenseigenen Recycling-
zentrum in Dortmund transportiert werden. 

Im Recyclingzentrum werden die zurückgegebenen Pumpen 
gesammelt und für die weitere Verarbeitung manuell sortiert. 
Obwohl WILO bereits ein Recyclingverfahren für Pumpen mit 
SE entwickelt hat, treffen diese in der Regel in gemischten Char-
gen ein, wobei einige Pumpen Sensoren oder Steuereinheiten 
enthalten, die eine besondere Behandlung erfordern (siehe Ab-
bildung 1). Daher muss die Sortierung derzeit von geschultem 
Personal durchgeführt werden. Zwar können Experten vor Ort 
SE-haltige Pumpen schnell identifizieren, doch der manuelle 
Prozess ist zeit- und kostenintensiv, was die effiziente Skalie-
rung der Recyclingaktivitäten erschwert. 

  
Abbildung 1: Beispiel einer Gitterbox mit verschiedenen Pumpen. 



RETHINK - Impulse zur zirkulären Wertschöpfung 2026/01 
 

 
  2 

Datenbasierte Methoden, insbesondere Deep-Learning-Tech-
nologien im Bereich des maschinellen Sehens, bieten erhebli-
ches Potenzial zur Automatisierung solcher Sortierprozesse 
(Abou Baker, N.; Handmann, U., 2022). Neben der gezielten 
Vorsortierung für das Recycling eröffnen sich weitere Einsatz-
möglichkeiten wie KI-gesteuerte Demontageprozesse (Díaz, I. 
et al., 2025) oder prädiktive Wartung (Scaife, A. D., 2023), die 
die Lebensdauer von Komponenten verlängern können. 

Moderne Objekterkennungssysteme bieten daher großes Po-
tenzial, die Effizienz der Vorsortierung zu steigern, indem sie 
Pumpentypen und deren genaue Position in gemischten Sam-
melboxen präzise identifizieren. Die vollständige Automatisie-
rung des Sortierprozesses stellt jedoch eine komplexe Heraus-
forderung dar und setzt eine präzise Entwicklung sowie eine 
umfassende Erprobung der eingesetzten KI-Modelle voraus. 
Gründe dafür sind unter anderem geringe visuelle Unter-
schiede, die Vielzahl an Modellen und Bauformen sowie indivi-
dueller Verschleiß über die Nutzungsdauer hinweg. 

Außerdem erfordert die Einführung automatisierter Prozesse 
nicht nur eine technologische, sondern auch eine wirtschaftli-
che und ökologische Abwägung. Eine kontinuierliche Überwa-
chung ressourcenbezogener Kennzahlen, wie etwa des Ener-
gieverbrauchs durch leistungsstarke Rechner und Robotiksys-
teme, ist deshalb ebenso wichtig wie die Verlässlichkeit der KI-
Modelle. 

Diese Pilotstudie konzentriert sich zunächst auf eine zentrale 
Forschungsfrage: Ist es modernen KI-Modellen möglich, Pum-
pen mit SE anhand von Bildern aus unterschiedlich gefüllten, 
gemischten Sammelboxen zuverlässig zu identifizieren? Die Er-
gebnisse sollen Aufschluss darüber geben, ob eine KI-basierte 
Vorsortierung alter Pumpen in einem industriellen Umfeld um-
setzbar ist. 

Instanzsegmentierung: Technischer Hintergrund 
Im Gegensatz zu Daten, die von LiDAR, Radar oder Tiefenka-
meras erfasst werden und räumliche Informationen liefern, sind 
Bilder herkömmlicher Kameras im Wesentlichen zweidimensio-
nal. Die Farbinformation kann dabei eine zusätzliche Dimension 
darstellen, wodurch der Informationsgehalt jedes einzelnen Pi-
xels erweitert wird. 

Maschinelles Sehen orientiert sich stark am menschlichen Seh-
sinn: Wie Menschen erkennen solche Systeme zunächst Kanten 
und Kontraste und bauen darauf komplexe Muster auf. So las-
sen sich Objekte in Bildern erkennen und kategorisieren. 

Im maschinellen Sehen können Muster auf verschiedenen De-
tailebenen erkannt werden: In der herkömmlichen Bildklassifi-
kation wird einem gesamten Bild ein einziges Label zugewie-
sen. Die Objekterkennung identifiziert mehrere Objekte in einer 
Szene, versieht sie mit Labels und zeichnet einen Begrenzungs-
rahmen um jedes Objekt. Die semantische Segmentierung ord-
net jedem Bildpixel eine Klasse zu, unterscheidet jedoch nicht 
zwischen Objekten derselben Klasse. Instanzsegmentierung 

kombiniert diese beiden Ansätze: Sie erkennt jedes Objekt ein-
zeln und erstellt dabei jeweils eine pixelgenaue Maske (Abou 
Baker, N.; Rohrschneider, D.; Handmann, U., 2024). 

Im WILO-Recyclingzentrum besteht die Herausforderung der 
Vorsortierung zunächst darin, Pumpen mit SE-Komponenten 
aus gemischten Gitterboxen herauszufiltern. Hierbei ist der Ein-
satz von Instanzsegmentierung zwingend erforderlich, um jede 
einzelne Pumpe in einem unübersichtlichen Bild pixelgenau 
voneinander abzugrenzen. Dadurch können weitere Prozess-
schritte, beispielsweise das automatisierte Greifen der erkann-
ten Pumpen durch Robotersysteme, effizient umgesetzt wer-
den. 

Um die Leistungsfähigkeit eines solchen Modells zu bewerten, 
werden üblicherweise drei zentrale Kennzahlen herangezogen, 
die dessen Stärken und Schwächen quantifizieren. Im Hinblick 
auf die Erkennung von Pumpen mit SE-Komponenten bedeu-
ten diese im Einzelnen: 

1. Präzision: Dieser Wert gibt an, wie viele der vom Mo-
dell als SE-haltig erkannten Pumpen tatsächlich SE 
enthalten. Eine hohe Präzision bedeutet also, dass das 
System nur selten fälschlicherweise Pumpen als SE-
haltig klassifiziert, die in Wirklichkeit keine SE-Kompo-
nenten aufweisen. 

2. Sensitivität: Diese Kennzahl beschreibt, wie viele der 
tatsächlich vorhandenen SE-haltigen Pumpen vom 
Modell erkannt werden. Ein hoher Wert zeigt an, dass 
das System wenige SE-haltige Pumpen übersieht. 

3. Mittlere Durchschnittliche Präzision (MDP): Für Auf-
gaben der Instanzsegmentierung ist die MDP die 
wichtigste Bewertungsgröße. Sie berechnet die 
Durchschnittspräzision anhand verschiedener 
Schwellenwerte der Überschneidung zwischen vor-
hergesagten und tatsächlichen Segmentierungsmas-
ken. Je höher der Schwellenwert, desto genauer müs-
sen die vorhergesagten Grenzen mit den Tatsächli-
chen übereinstimmen. Für jeden Schwellenwert wird 
eine Präzisions-Sensitivitäts-Kurve erstellt und die Flä-
che unter der Kurve beschreibt die durchschnittliche 
Präzision an diesem Punkt. MDP eignet sich beson-
ders für Anwendungen, in denen exakte Segmentie-
rungsgrenzen, wie etwa beim robotergestützten Grei-
fen, erforderlich sind. 

Versuchsaufbau 
Um ein praxisnahes Konzept für die automatisierte Instanzseg-
mentierung zu entwickeln, ist zunächst ein strukturierter Daten-
satz mit ausreichend Bildern und Annotationen erforderlich. 
Bevor ein Modell trainiert werden kann, müssen daher aussa-
gekräftige Bilddaten der realen Recyclingumgebung aufge-
nommen werden. Diese bilden die Grundlage für die Entwick-
lung und spätere Bewertung des Segmentierungsverfahrens. 
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Datenerfassung: Mehrere Gitterboxen mit unterschiedlichen 
Füllständen wurden manuell aus einer festen Überkopfposition 
fotografiert. Zwischen den einzelnen Aufnahmen wurden ei-
nige Pumpen aus der Box entnommen. Die unterschiedlichen 
Füllstände spiegeln realistische Bedingungen wider und lassen 
sich mit geringem Zusatzaufwand nutzen, um die Vielfalt des 
Datensatzes deutlich zu erhöhen. Insgesamt wurden 72 Bilder 
mit einer Auflösung von 2048 x 1536 Pixeln aufgenommen. Bei-
spiele solcher Bilder sind in den Abbildungen 1 und 2 zu sehen. 

Datenannotation: KI-Modelle benötigen für das überwachte 
Training beschriftete Daten, um Muster zu erkennen und zu ler-
nen. Für die Instanzsegmentierung muss jedes Objekt im Bild 
manuell mit einem Polygon umrissen werden, um es klar von 
Hintergrund und anderen Objekten abzugrenzen. Anschlie-
ßend wird jedem markierten Objekt eine Klassenbezeichnung 
zugeordnet. Diese Annotation erfolgte mithilfe der Plattform 
Roboflow (Roboflow, 2025). Da die Zielsetzung dieser Fallstudie 
die Erkennung von Pumpen mit SE ist, wurden andere Pumpen 
und Gegenstände nicht gekennzeichnet. Das Ergebnis dieser 
Prozedur ist ein Datensatz aus 72 Bildern mit insgesamt 377 
annotierten SE-Pumpen. 

Datenaugmentation: Um die Lernfähigkeit des Modells zu ver-
bessern, wurde umfangreiche Datenaugmentation eingesetzt. 
Bei diesem Verfahren werden bestehende Bilder durch ver-
schiedene Modifikationen verändert, um die Robustheit des 
Modells zu erhöhen und mehr Variabilität zu schaffen, ohne 
neue Fotos aufnehmen zu müssen. In diesem Fall wurden Ro-
tationen, das Hinzufügen von Bildrauschen, Anpassungen der 
Helligkeit sowie Weichzeichnung eingesetzt. Durch diese 
Transformationen wurde der Datensatz von ursprünglich 72 Bil-
dern auf insgesamt 1.224 augmentierte Bilder erweitert und 
bietet so eine deutlich bessere Trainingsgrundlage. 

Datensatzaufteilung: Ein wesentlicher Schritt zur Bewertung der 
Generalisierungsfähigkeit eines Modells besteht darin, den Da-
tensatz in Trainings- und Validierungssatz zu unterteilen. So 

wird gewährleistet, dass das Modell an neuen Daten bewertet 
wird und echte Muster statt auswendig gelernter Beispiele er-
kennt. Nach der üblicherweise im maschinellen Lernen ange-
wandten 80/20-Aufteilung besteht der finale Datensatz aus zu-
fällig ausgewählten 980 Trainings- und 244 Validierungsbei-
spielen. 

Modellauswahl und Training: Für diese Studie wurden Modelle 
der „You Only Look Once“ (YOLO)-Familie gewählt. YOLO-Mo-
delle sind bekannt für ihre Geschwindigkeit und Genauigkeit 
bei verschiedenen Aufgaben des maschinellen Sehens (Abou 
Baker, N.; Rohrschneider, D.; Handmann, U., 2022). Ihre Effizi-
enz sowohl auf Endgeräten als auch in der Cloud hat sie zu 
einer beliebten Wahl in Industrie und Forschung gemacht. 

Konkret wurde das YOLOv11-Framework ausgewählt, wobei 
drei verschiedene Modellgrößen verglichen wurden: Nano, 
Small und Medium (Jocher, G., & Qiu, J., 2024). Jedes Modell 
wurde über 30 Epochen trainiert, sodass alle Trainingsdaten 30-
mal durchlaufen wurden, um die Mustererkennung des jeweili-
gen Modells zu optimieren. 

Ergebnisse und Diskussion 
Der Großteil der Pumpen im Datensatz konnte von allen drei 
YOLOv11-Varianten zuverlässig erkannt werden, insbesondere 
solche mit sichtbaren digitalen Steuerelementen. Das kleinste 
Modell erzielte Präzisions- und Sensitivitätswerte von über 
75 %, was zeigt, dass auch ressourcenschonende KI-Systeme 
komplexe Muster erlernen können. Abbildung 2 zeigt zwei 
qualitative Beispiele für die Stärken und Schwächen des 
YOLO11n-Modells. Der direkte Vergleich zwischen den Origi-
nalbildern (linke Spalte), den manuellen Annotationen in Grün 
(mittlere Spalte) und den Vorhersagen des YOLO11n-Modells in 
Lila (rechte Spalte) zeigt, wie das Modell unübersichtliche Sze-
nen mit mehreren Pumpen analysiert und interpretiert. 

 

Abbildung 2: Zwei qualitative Beispiele mit Originalbild (links), der manuellen Annotation (Mitte) und der Vorhersage (rechts). 



RETHINK - Impulse zur zirkulären Wertschöpfung 2026/01 
 

 
  4 

Trotz der visuellen Unordnung gelingt es dem Modell, die 
meisten Pumpen in jeder Gitterbox zuverlässig zu erkennen, 
was seine robuste Leistungsfähigkeit unterstreicht. Die Seg-
mentierung stimmt dabei eng mit den tatsächlichen Umrissen 
der Pumpen überein. Dies zeigt, dass das Modell eine sinnvolle 
Repräsentation von Form und Struktur der Pumpen erlernt hat 
und sich nicht nur auf einfache Merkmale wie Farbe oder Textur 
stützt.  

Bei genauerer Betrachtung treten jedoch zwei typische Fehler-
quellen zutage: 

1. Pumpen mit SE, deren Steuermodul vollständig oder 
teilweise verdeckt ist, werden gelegentlich übersehen. 

2. Pumpen mit Steuermodul, aber ohne SE, werden 
fälschlicherweise erkannt. 

Diese Erkenntnisse deuten darauf hin, dass das Modell eine Ab-
hängigkeit zwischen dem Vorhandensein eines Steuermoduls 
und SE gelernt hat. Obwohl die meisten Pumpen mit Steuer-
modul tatsächlich SE enthalten, trifft dies nicht immer zu, was 
die Aufgabe deutlich erschwert. Gleichzeitig zeigt dies, dass das 
Modell gezielt relevante Bereiche der Pumpe analysieren kann, 
ohne dass diese Relation explizit vorgegeben wurde. 

Quantitative Evaluation der Modelle 
Um die Erkennungsgenauigkeit systematisch zu bewerten, 
wurden in dieser Studie für alle drei Modellvarianten jeweils 
die drei oben beschriebenen Leistungskennzahlen gemessen, 
welche in Abbildung 3 dargestellt sind. 

 

Alle drei Varianten erzielen eine hohe Präzision, wobei die 
Werte im Bereich von 0,80 bis 0,90 liegen. Dies bestätigt, dass 
das Modell in den meisten Fällen (80–90 %) korrekt ist, wenn es 
eine Pumpe als SE-haltig identifiziert. Praktisch gesehen verrin-
gert dies Fehldetektionen und verhindert, dass in nachfolgen-
den Recyclingschritten unnötig Ressourcen für die Verarbei-
tung nicht SE-haltiger Pumpen aufgewendet werden. 

Die Ergebnisse zur Sensitivität, dargestellt in der zweiten Bal-
kengruppe in Abbildung 3, zeigen über die Modellgrößen 

hinweg leichte Einbußen gegenüber der Präzision und liegen 
zwischen 0,7 und 0,8. Während die Mehrheit der relevanten 
Pumpen erfolgreich erkannt wird, bleiben 20–30 % unerkannt. 
Diese Fehlerrate ist für die Maximierung der SE-Rückgewin-
nung von großer Bedeutung und unterstreicht die Notwendig-
keit weiterer Optimierungen, um die Vollständigkeit in praxis-
nahen Anwendungen zu gewährleisten. 

Die im dritten Abschnitt von Abbildung 3 dargestellten MDP-
Werte zeigen deutlichere Unterschiede zwischen den Model-
len. Das Nano-Modell erreicht einen Wert von etwa 0,6, wäh-
rend das Small- und Medium-Modell ungefähr 0,7 erzielen. Da 
diese Metrik die Leistung über verschiedene Überlappungs-
schwellen hinweg bewertet, belegen die höheren MDP-Werte 
der größeren Modelle, dass diese genauere Segmentierungs-
grenzen vorhersagen. Dies ist insbesondere in Szenarien wich-
tig, in denen eine präzise Lokalisierung und Abgrenzung zwi-
schen Instanzen erforderlich sind, etwa bei der robotergestütz-
ten Handhabung. 

Herausforderungen und Limitationen 
Obwohl die YOLO-Modelle eine robuste Leistung bei der Iden-
tifikation von Pumpen mit SE zeigten, müssen vor einem in-
dustriellen Einsatz noch mehrere Einschränkungen überwun-
den werden: 

Datensatzumfang und -vielfalt: Die größte Einschränkung liegt 
in der Größe und Vielfalt des Datensatzes. In dieser Studie wur-
den 72 Originalbilder auf 1.224 Bilder durch Datenaugmenta-
tion erweitert. Zwar erhöht die Augmentation die Trainings-
menge, kann jedoch echte Variationen unter realen Bedingun-
gen nicht vollständig ersetzen. Somit stellt der aktuelle Daten-
satz lediglich einen begrenzten Ausschnitt der Herausforderun-
gen im täglichen Recyclingbetrieb dar. Mit zunehmender Kom-
plexität und Vielfalt der Daten – beispielsweise durch weitere 
Pumpentypen oder fehlende Komponenten – könnten robus-
tere und komplexere Modellvarianten erforderlich werden, um 
eine hohe Segmentierungsleistung zu gewährleisten. 

Erkennungsprobleme: Die qualitative Analyse zeigte verschie-
dene Schwierigkeiten auf. Pumpen ohne SE, aber mit sichtba-
rem Steuerelement, wurden irrtümlich erkannt, während Pum-
pen mit verdecktem Steuerelement weniger zuverlässig detek-
tiert wurden. Strukturell ähnliche Pumpen, die nebeneinander 
lagen, wurden teilweise zusammengefasst und kleinere Pum-
pen oder solche am Bildrand wurden mit geringerer Zuverläs-
sigkeit erkannt. In der Praxis ist es entscheidend, ein Gleichge-
wicht zwischen Präzision und Sensitivität zu finden. Ein Modell 
mit hoher Präzision und niedriger Sensitivität erkennt zwar SE-
haltige Pumpen korrekt, übersieht jedoch einige, was ange-
sichts steigender Nachfrage nach SE, Importabhängigkeiten 
und der Wirtschaftlichkeit des Systems problematisch sein 
könnte. Ein Modell mit hoher Sensitivität, aber niedriger Präzi-
sion erkennt fast alle Pumpen und reduziert dadurch Material-
verluste erheblich. Dabei werden allerdings auch viele irrele-
vante Pumpen bearbeitet, was an anderer Stelle zu einem 

Abbildung 3: Leistungsvergleich der YOLOv11-Modelle Nano, Small 
und Medium hinsichtlich Präzision, Sensitivität und MDP. 
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höheren Aufwand führt. Das optimale Gleichgewicht hängt 
schließlich davon ab, ob die Minimierung von Materialverlusten 
oder die Reduktion des betrieblichen Aufwands in den Folge-
prozessen im Vordergrund steht. 

Betriebliche und wirtschaftliche Überlegungen: Der Schritt vom 
Labor zur Praxis stellt neue Hürden dar: Staub, Vibrationen und 
wechselnde Lichtverhältnisse können Kameras beeinträchtigen. 
Auch wenn Modelle in ersten Tests ausgezeichnete Ergebnisse 
liefern, ist bei ihrer langfristigen Anwendung in der Praxis häu-
fig mehr Aufwand nötig. KI-Entscheidungen sollten nachvoll-
ziehbar und zuverlässig sein, um auch das Vertrauen der Mit-
arbeitenden zu stärken. Das System erzielt seinen wirtschaftli-
chen Vorteil erst, wenn der Nutzen aus der Ressourcenrückge-
winnung höher ist als die anfallenden Kosten für Hardware, 
Wartung und Energie. 

Zukünftige Arbeit 
Um die Leistungsfähigkeit der Modelle fundiert zu bewerten 
und die Arbeit in Richtung eines industriellen Einsatzes bei 
WILO weiterzuentwickeln, sollten zukünftige Arbeiten auf deut-
lich größere und vielfältigere Datensätze ausgeweitet werden. 
Diese Datensätze sollten Bilder umfassen, die unter unter-
schiedlichen Bedingungen aufgenommen wurden – etwa aus 
verschiedenen Kamerapositionen und mit einer größeren Viel-
falt an Pumpen. 

Ebenso ist es von zentraler Bedeutung, sorgfältig zu planen, wie 
die trainierten Modelle nahtlos und effektiv in eine durchgän-
gige Prozesskette integriert werden können. Hierzu könnten Pi-
lotprojekte direkt im Recyclingcenter durchgeführt werden, bei 
denen Förderbandsysteme, robotergestützte Handhabung und 
nachgelagerte Recyclingprozesse einbezogen werden. 

Im industriellen Umfeld könnte das KI-System beispielsweise in 
eine Anlage integriert werden, in der ein Roboterarm erkannte 
Pumpen auf ein Förderband legt. Da es schwierig ist, alle rele-
vanten Pumpen in einer befüllten Kiste gleichzeitig zu erken-
nen, sollten zu einem späteren Zeitpunkt zusätzliche Kameras 
installiert werden, um Einzelaufnahmen für eine hochpräzise 
Klassifikation zu ermöglichen. Das System würde die Pumpen 
anschließend je nach SE-Präsenz in die entsprechenden Sam-
melbehälter sortieren. Abbildung 4 veranschaulicht diese inte-
grierte Prozesskette, die maschinelles Sehen, Robotik und Steu-
erungssysteme miteinander verbindet.  

Beginnend auf der linken Seite erfasst eine Überkopf-Kamera 
die im Gitterkasten gesammelten Pumpen und segmentiert da-
bei einzelne Instanzen mit SE-Anteil zur anschließenden Robo-
terhandhabung. Dies ist das Eingangsszenario, das in der vor-
liegenden Fallstudie untersucht wurde. Basierend auf den oben 
genannten Erkenntnissen sollte hierbei ein Modell mit hoher 
Sensitivität eingesetzt werden, um sicherzustellen, dass mög-
lichst viele SE-haltige Pumpen auf das Förderband gelangen. 
Im nächsten Schritt erfolgt dann eine erneute Kontrolle jeder 
einzelnen Pumpe durch ein Modell mit hoher Präzision. Hierbei 
wird untersucht, ob SE tatsächlich enthalten sind. Pumpen, bei 

denen diese Annahme verweigert wird, werden in einen sepa-
raten Behälter für Pumpen ohne SE umgeleitet, während die 
bestätigten Pumpen dem speziellen WILO-Recyclingprozess 
zugeführt werden. 

Darüber hinaus würde eine Erweiterung des Systems zur 
gleichzeitigen Bewertung des Pumpenzustands – zusätzlich zur 
SE-Erkennung – einen erheblichen Mehrwert für den Betrieb 
bieten. Durch die Erkennung von Schäden oder Wartungsbe-
darf könnte WILO gezielt Strategien zur Aufarbeitung und Wie-
derverwendung von Pumpen verfolgen, insbesondere wenn 
ein Recycling noch nicht notwendig ist. 

Schlusswort 
Mit dem weltweit steigenden Bedarf an SE stehen Innovationen 
wie KI-gestützte Recyclingverfahren für mehr als nur techni-
schen Fortschritt. Sie kennzeichnen eine Entwicklung hin zu in-
dustriellen Systemen, in denen technologische Innovation mit 
einem bewussteren Umgang mit Ressourcen einhergeht. Zwar 
stellt die KI-basierte visuelle Inspektion allein noch keine voll-
ständige Lösung dar, ist aber eine wichtige Voraussetzung für 
die Ressourceneffizienz im Recyclingprozess. Diese Machbar-
keitsstudie belegt, dass moderne Objekterkennungssysteme 
Pumpen mit SE-Anteilen zuverlässig erkennen und damit einen 
spürbaren Mehrwert für die Recyclingprozesse von WILO bie-
ten können.  

Weitere Forschung, größere und vielfältigere Datensätze sowie 
kollaborative Pilotprojekte könnten die Entwicklung KI-basier-
ter Sortieranlagen vorantreiben. Damit würde ein bedeutender 
Fortschritt in Richtung Kreislaufwirtschaft erzielt, was nicht nur 
zur Verringerung der Umweltauswirkungen beiträgt, sondern 
auch die Widerstandsfähigkeit und Nachhaltigkeit der gesam-
ten Lieferkette erhöht. 

  

Abbildung 4: Konzept einer Prozesskette zur Sortierung von SE-
Pumpen. 
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